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Is Fisher's Model Necessary for the Theory 
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of Population Improvement ? 

Summary. It is shown here that genetic advance in one 
cycle of  recurrent selection can be formulated directly in 
terms of covariances between relatives by application of 
the general statistical principle of  linear prediction. For 
practical use of such formulae it is necessary to estimate 
the corresponding covariance between relatives from the 
mating design used. With General Combining Ability selec- 
tion such estimation is direct. For other types of selection, 
it is necessary to derive associated covariances from other 
types of  covariances but it is not necessary to use classical 
results of covariances between relatives in terms of genetic 
effects. Indeed, covariances can be derived without facto- 
rial decomposition of the genetic effects at one locus, i.e., 
without the concept of additivity and dominance. This ap- 
proach allows a simple derivation of the genetic advance 
after n cycles of selection, followed by m generations of  
intercrossing, with a minimum of assumptions. 
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Introduction 

By Fisher's model I mean the factorial decomposition in 
additive and dominance effects of  the value of a genotype 
reduced to one locus. I intend to show that this model is 
not necessary: (1) for formulating a general expression of  
the genetic advance whatever the population improvement 
procedure, (2) for estimating the covariances between rel- 
atives associated with the breeding method - i a .  - the 
covariance between the value of the parents according to 
any particular system of testing and the value of their off- 
spring after intercrossing. Demonstration of the theory 
will be in terms of population improvement by recurrent 
selection. 

A General Formulation of  Genetic Advance in Recurrent 
Selection 

Recurrent selection is a method of population improve- 
ment where the selected units (individuals or families) are 
intercrossed once or several times to produce the next 
generation. The main issue addressed is the prediction of 
the value of the offspring after intercrossing, knowing the 
value of the parents according to a particular system of  
test (Gallais 1977). To simplify the notation I denote by 
T the value of the parents according to a particular system 
of testing and by M the value of their offspring after one 
generation of intercrossing. 

Suppose (assumption 1) that T and M are distributed 
according to a bivariate normal distribution with means 
respectively E(T) and E(M) and with variances and covari- 
ance var T, var M, coy TM. Then, whatever the genetic 
effects, level of  plofdy, and criterion of test, according to 
the linear principle of prediction, the value of M, knowing 
T, will be, with selection on one sex: 

coy TM (T - T) (1) 
IVl = E(M) + var T 

This is equivalent to predicting the general combining abi- 
lity of the individuals tested. 

From (1) the general expression of genetic advance 
from generation n to generation n + 1 gives: 

coy TM 
/an+l --/an - (/an,1 --/an) + i ~ _ _ ~ -  (2) 

in which/an is the value of  the population at generation n, 
/an,~ is its value after intercrossing without selection in n 
and i is the selectfon intensity in standard units. 

In establishing Eq. (1) and (2), no direct genetic as- 
sumptions are involved. However, to use these formulae to 
predict genetic advance, it is necessary to know the differ- 
ence (/an,1 - / a n )  and cov TM (var T being estimated di- 
rectly). 
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It is often assumed t h a t  ( J / n , 1 -  /'/n) is zero. For di- 
plofds, this is true only in the absence of epistasis (as- 
sumption 2). For autopolyplofds it is true only in the ab- 
sence of interactions between alleles (Gallais 1975). In 
what follows I will only consider the situation of diploidy 
in the absence of epistasis; consequently it is only neces- 
sary to estimate coy TM. The case of epistasis will be con- 
sidered in the appendix. 

Estimation of the Covariances Between Relatives 
Associated with the Breeding Method 

Cov TM is the covariance associated with the breeding 
method. It is defined at the population level. This is a co- 
variance between relatives. For example, with individual 
phenotypic (mass) selection, this is the covariance between 
parents and their offspring (cov PO) and with general com- 
bining ability selection (GCA) it is a covariance between 
half-sibs (coy HS). The problem is then to estimate cov 
TM. 

Note that with GCA selection, the value according to T 
is equivalent to the value according to M; hence without 
assumption (except no. 1) coy TM will be estimated by 
the variance among half sib families. 

For other breeding methods the principle is to derive 
coy TM from estimable covariances between relatives of 
the mating design. According to known results from the 
application of the Fisher's model, it is known that without 
epistasis (assumption 2): 

covPO 1 / 2 o ~ , c o v H S  1/4 2 = = O A ,  

2 2 
covFS = 1 / 2 o  A + l / 4 0  n (3) 

cov HUN = 1/8 o A (half uncle-nephew). 

cov HS and cov FS can be estimated in a two-factor mating 
design, and coy HS alone from the variance among half- 
sib families from a within-population top cross. Hence, 

cov PO = 2 coy Hs, coy HUN = 1/2 coy HS 
(4) 

2 = 4(cov FS - coy HS) etc . . . .  O G 

It is possible to establish such relationships without 
relying on the concepts of additivity and dominance in- 
troduced by Fisher (1918). Let Gij be the expected value 
of a genotype AiAj, i.e., the mean of all individuals in the 
population with genotype AiAj at the considered locus. In 
a random-mating population alleles in pairs of zygotes exist 
in three states of  identity by descent (a letter representing 
a class of  identity by descent two different letters repre- 
sent independent homologous genes), as follows: 

(ij l i j), (ij l ik), (ij I kl). 

In each state a probability noted ~( I ), can be associated 

with the state of identity between brackets. After summa- 
tion over the set of loci, the general expression of covari- 
ance between relatives X and Y in a random mating popu- 
lation is: 

cov XY = ~Xy (ij I ij) coy  GijGij + 

+ ~PXy (ij [ ik) cov  Gi jGik  , ( 5 )  

with cov GijGij = s Z E(G~i -/.ts): = o~, 

coy GijGik = ~ E(G~j -/Zs)(G~k -- Us ) = o G G', 
s 

s denoting a particular locus. 

Then, according to the values of the coefficients r 1): 

covFS = 1 / 4 o  G + I / 2 o G G ,  / 

covHS = 1/2 oc6 ,  

cov HUN = 1/4 a ~ ,  (6) 

COY P O  = O G G "  

Thus the relationships among variances and covariances 
are found without expressing covariances in terms of  addi- 
tive and dominance variance components. The methodol- 
ogy used is an application of Cotterman's approach (1948) 
with new and independent developments given by Gillois 
for inbred populations (1964) (see also GaUais 1970, 1976 
for a general formulation). Clearly, using the factorial de- 
composition of the genotypic value, this leads to o c c '  = 

2 and to the classical expression of the covariances. 1/2 o A 
With the proposed approach the concepts of  additivity 
and dominance do not appear necessary. In the appendix 
the same approach is developed to take into account epis- 
tasis and to derive the general expression of genetic ad- 
vance after n cycles of selection followed by m genera- 
tions of intercrossing. 

Conclusion 

Only assumption 1, (bivariate normal distribution of the 
value of the parents and of the value of their offspring), is 
essential to formulate and to apply the theory of genetic 
advance under recurrent selection. Griff'mg (1960) has 
shown that such an assumption is fulfilled if the effects 
of a locus (or group of loci) are small in comparison to the 
phenotypic standard deviation. However the assumption 1 
is not as strong; it can also be replaced by the assumption 
of linear relationship between the value of the parents ac- 
cording to the system of testing and the value of their off- 
spring after one or several cycles of  intercrossing. 

This statistical assumption allows a general expression 
of genetic advance in one or several cycles of selection, or 
after relaxation of the selection, in terms of covariances 
between relatives. It does not appear necessary to use the 
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factorial decomposition o f  genotypic value in terms of  
additivity and dominance, i.e., it is not  necessary to de- 
compose the contribution of  a locus. The covariances be- 
tween relatives can be directly deffmed at the genotypic 
level for a locus or a group of  loci o f  size related to the 
degree o f  epistasis considered. The results are extended to 
the set of  involved loci by  summing on all loci or possible 
groups o f  loci. 

There is nothing new in the derived results. However 
the methodology used, illustrated in the appendix, allows 
a simple derivation of  already known results, with the 
minimum of  assumptions. 

Appendix 

so coy(1,1) - coy(1,0) = 1/4 OAA2 

In the general situation putting m'  = m - 1  

~Om,(1,0) = (1/2)m't.00(1,0) + (1/2) m '(1 - (1/2)m')  ~o0(1,1) 
and 
~Om'(1,1) = (1/2)2 m'~oo(1,1) 

Hence, 

/an+l ,m' =/an ,m + i 0 {Kt cov(1,0) 

+ (1/2) m'Ktl(cov(1,1)  - cov(1,0)) } / ~ ,  

with K1 = ~Oo(1,0) + ~Oo(1,1) and Kit  = ~0o(1,1). According 
to (9), Kt = K n  = i for selection on the phenotype and 
K1 = 1/2, K n  = 1/4 for G.C.A. selection. Solving the re- 
currence in r and m: 

Prediction o f  Genetic Advance in the Case o f  Epistasis 
without Direct Reference to Fisher's Model 

To compute/an ,1, I consider the general case where selec- 
tion is followed by m cycles of  intercrossing. Applying the 
general principle of  linear prediction (with assumption 1), 
the value o f  generation n+l after m cycles of  intercrossing 
will be (Gallais 1979): 

/2n+l,m--I =/an,m + i 0  2 m - 1  c~  , (7) 

in which 0 = 1 or 2 if selection is n one sex or two. Mm is 
the value of  offspring from one genotype in generation 
n+l after m - 1  cycles of  intercrossing. 0 2 m - I  represents 
the number of  genotypes contributing to the value o f  the 
generation n+ 1 after ( m -  1 ) cycles of  intercrossing (without 
limitation of  the population size, assumption (3)). 

Applying the principle of  conditional expectations, coy 
TMm can be written, with epistasis restricted to pairs of  
loci: 

coy TMm = ~0m(1,0) coy(1,0) + ~0m(1,1) coy(1,1), (8) 

in which coy(1,0) and coy(1,1) represent covariances be- 
tween two-locus genotypes having respectively one or two 
non homologous genes in common.  ~0(1,0) and ~0(1 [1) 
are the probabilities (coefficients of  kinship) associated to 
such situations. (in the situation (0,0) genotypes having 
no gene in common,  the conditional covariane~ is zero). 
For example, in the absence of  linkage: 

- covarianee parent offspring coy PO = cov(1,1) 
- covariance between half-sibs 

cov HS = 1/4 coy(l ,0)  + 1/4 coy(l ,1)  (9) 
- covariance half uncle-nephew 

coy HUN = 3/16 cov(1,0) + 1/16 coy(i,1),  
2 It is clear that coy(1,0) = 1 /20A,  

coY(I,1)= 1/2 o A + 1/4 2 OAA, 

/an,re' =/aO + i 0 {nKlcov(1 ,0)  

r m n  

+ (1/2) m 'Kl l  r__~ 1 (1/2)r-- 1 

- cov(1,0)) } / X / v - ~ T .  

(coy(I ,1)  

r = n  

Noting that ~ (1/2) r - 1  = 2(1 - (1/2) n) 
r = l  

/an,m-I  - t t n =  - 2  i 0 K n ( 1  - (1/2) m - l )  

- (1 - (1/2)n)(cov(1,1) 

- coy (1 ,0 ) ) /V~7  T. 

With m > 1, this difference will be zero if coy(l ,1)  - 
coy(1,0) = 0, i.e., in the absence of  epistasis. 

To estimate ~n ,m - 1 - / a n )  or ~ n  ,1 - / a n )  with m = 2, 
it is then necessary to estimate cov(1,1) and coy(1,0) from 
covariances between relatives such coy PO, cov HS or coy 
HUN. 
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