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Is Fisher’s Model Necessary for the Theory of Population Improvement ?

A. Gallais

Station d’Amélioration des Plantes Fourragéres, INRA, Lusignan (France)

Summary. It is shown here that genetic advance in one
cycle of recurrent selection can be formulated directly in
terms of covariances between relatives by application of
the general statistical principle of linear prediction. For
practical use of such formulae it is necessary to estimate
the corresponding covariance between relatives from the
mating design used. With General Combining Ability selec-
tion such estimation is direct. For other types of selection,
it is necessary to derive associated covariances from other
types of covariances but it is not necessary to use classical
results of covariances between relatives in terms of genetic
effects. Indeed, covariances can be derived without facto-
rial decomposition of the genetic effects at one locus,ie.,
without the concept of additivity and dominance. This ap-
proach allows a simple derivation of the genetic advance
after n cycles of selection, followed by m generations of
intercrossing, with a minimum of assumptions.
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Introduction

By Fisher’s model I mean the factorial decomposition in
additive and dominance effects of the value of a genotype
reduced to one locus. I intend to show that this model is
not necessary: (1) for formulating a general expression of
the genetic advance whatever the population improvement
procedure, (2) for estimating the covariances between rel-
atives associated with the breeding method — ie. — the
covariance between the value of the parents according to
any particular system of testing and the value of their off-
spring after intercrossing. Demonstration of the theory
will be in terms of population improvement by recurrent
selection.

A General Formulation of Genetic Advance in Recurrent
Selec_tion

Recurrent selection is a method of population improve-
ment where the selected units (individuals or families) are
intercrossed once or several times to produce the next
generation, The main issue addressed is the prediction of
the value of the offspring after intercrossing, knowing the
value of the parents according to a particular system of
test (Gallais 1977). To simplify the notation I denote by
T the value of the parents according to a particular system
of testing and by M the value of their offspring after one
generation of intercrossing.

Suppose (assumption 1) that T and M are distributed
according to a bivariate normal distribution with means
respectively E(T) and E(M) and with variances and covari-
ance var T, var M, cov TM, Then, whatever the genetic
effects, level of ploidy, and criterion of test, according to
the linear principle of prediction, the value of M, knowing
T, will be, with selection on one sex:

- covTM =
M=EM)+ VT (T-T) (1)
This is equivalent to predicting the general combining abi-
lity of the individuals tested.

From (1) the general expression of genetic advance

from generation n to generation n + 1 gives:

Mn+1 —Hn = (4 ) + 1S
n+1 n n,l1 n m,

in which u, is the value of the population at generation n,
Mn,1 is its value after intercrossing without selection in »
and i is the selection intensity in standard units.

In establishing Eq. (1) and (2), no direct genetic as-
sumptions are involved. However, to use these formulae to
predict genetic advance, it is necessary to know the differ-
ence (Un,; — Mp) and cov TM (var T being estimated di-
rectly).
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It is often assumed that (i, — u,) is zero. For di-
ploids, this is true only in the absence of epistasis (as-
sumption 2). For autopolyploids it is true only in the ab-
sence of interactions between alleles (Gallais 1975). In
what follows I will only consider the situation of diploidy
in the absence of epistasis; consequently it is only neces-
sary to estimate cov TM. The case of epistasis will be con-
sidered in the appendix.

Estimation of the Covariances Between Relatives
Associated with the Breeding Method

Cov TM is the covariance associated with the breeding
method. It is defined at the population level. This is a co-
variance between relatives. For example, with individual
phenotypic (mass) selection, this is the covariance between
parents and their offspring (cov PO) and with general com-
bining ability selection (GCA) it is a covariance between
half-sibs (cov HS). The problem is then to estimate cov
™.

Note that with GCA selection, the value according to T
is equivalent to the value according to M; hence without
assumption (except no. 1) cov TM will be estimated by
the variance among half sib families.

For other breeding methods the principle is to derive
cov TM from estimable covariances between relatives of
the mating design. According to known results from the
application of the Fisher’s model, it is known that without
epistasis (assumption 2):

covPO =1/2 of\,covHS=l/401,
covFS =1/20% +1/40} 3)
covHUN=1/8 of\ (half uncle-nephew).

cov HS and cov FS can be estimated in a two-factor mating
design, and cov HS alone from the variance among half-
sib families from a within-population top cross. Hence,

cov PO = 2 cov Hs, cov HUN = 1/2 cov HS
oé = 4(cov FS — cov HS) etc. ... “)

It is possible to establish such relationships without
relying on the concepts of additivity and dominance in-
troduced by Fisher (1918). Let Gj; be the expected value
of a genotype AjA;, ie., the mean of all individuals in the
population with genotype AjA; at the considered locus. In
a random-mating population alleles in pairs of zygotes exist
in three states of identity by descent (a letter representing
a class of identity by descent two different letters repre-
sent independent homologous genes), as follows:

GilH), Gilk), @G lkD.
In each state a probability noted ¢( | ), can be associated
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with the state of identity between brackets. After summa-
tion over the set of loci, the general expression of covari-
ance between relatives X and Y in a random mating popu-
lation is:

cov XY = oy, (ij | if) cov Gy;Gj; +
+¢xy (ij | ik) cov Gy;Gix, (5)
with cov G;;Gyj = T E(G§j — uy)* = 04,

cov G;iGjy = %3 E(Gj; — n)(G}y —uy) =0gg',

s denoting a particular locus.

Then, according to the values of the coefficients ¢( | ):

covFS =1/40F +1/20g¢"

covHS =1/204¢4"

- ©)
covHUN=1/4 045"
covPO =045

Thus the relationships among variances and covariances
are found without expressing covariances in terms of addi-
tive and dominance variance components. The methodol-
ogy used is an application of Cotterman’s approach (1948)
with new and independent developments given by Gillois
for inbred populations (1964) (see also Gallais 1970, 1976
for a general formulation). Clearly, using the factorial de-
composition of the genotypic value, this leads to ogg' =
1/2 of,‘ and to the classical expression of the covariances.
With the proposed approach the concepts of additivity
and dominance do not appear necessary. In the appendix
the same approach is developed to take into account epis-
tasis and to derive the general expression of genetic ad-
vance after n cycles of selection followed by m genera-
tions of intercrossing.

Conclusion

Only assumption 1, (bivariate normal distribution of the
value of the parents and of the value of their offspring), is
essential to formulate and to apply the theory of genetic
advance under recurrent selection. Griffing (1960) has
shown that such an assumption is fulfilled if the effects
of a locus (or group of loci) are small in comparison to the
phenotypic standard deviation. However the assumption 1
is not as strong; it can also be replaced by the assumption
of linear relationship between the value of the parents ac-
cording to the system of testing and the value of their off-
spring after one or several cycles of intercrossing.

This statistical assumption allows a general expression
of genetic advance in one or several cycles of selection, or
after relaxation of the selection, in terms of covariances
between relatives. It does not appear necessary to use the
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factorial decomposition of genotypic value in terms of
additivity and dominance, i.e., it is not necessary to de-
compose the contribution of a locus. The covariances be-
tween relatives can be directly defined at the genotypic
level for a locus or a group of loci of size related to the
degree of epistasis considered. The results are extended to
the set of involved loci by summing on all loci or possible
groups of loci.

There is nothing new in the derived results. However
the methodology used, illustrated in the appendix, allows
a simple derivation of already known results, with the
minimum of assumptions.

Appendix

Prediction of Genetic Advance in the Case of Epistasis
without Direct Reference to Fisher’s Model

To compute un 1, [ consider the general case where selec-
tion is followed by m cycles of intercrossing. Applying the
general principle of linear prediction (with assumption 1),
the value of generation n+1 after m cycles of intercrossing
will be (Gallais 1979):

_, covTMy,

VvarT ™

in which 6 = 1 or 2 if selection is n one sex or two. My, is
the value of offspring from one genotype in generation
n+1 after m—1 cycles of intercrossing. 8 2™ ~! represents
the number of genotypes contributing to the value of the
generation n+1 after (m—1) cycles of intercrossing (without
limitation of the population size, assumption (3)).

Applying the principle of conditional expectations, cov
TM,, can be written, with epistasis restricted to pairs of
loci:

cov TMy, = ¢m (1,0) cov(1,0) + v, (1,1) cov(l,1), 8)

Mn+1,m—1 =HMn,m +ig 2™

in which cov(1,0) and cov(1,1) represent covariances be-
tween two-locus genotypes having respectively one or two
non homologous genes in common. ¢(1,0) and ¢(1 [ 1)
are the probabilities (coefficients of kinship) associated to
such situations. (in the situation (00) genotypes having
no gene in common, the conditional covariance is zero).
For example, in the absence of linkage:

— covariance parent offspring  cov PO

— covariance between half-sibs

cov HS = 1/4 cov(1,0) + 1/4 cov(1,1) 9)
— covariance half uncle-nephew

cov HUN = 3/16 cov(1,0) + 1/16 cov(1,1),

It is clear that cov(1,0)=1/2 02 ,

cov(l,1)=1/2 oz +1/4 oj\A,

=cov(1,l)

so cov(1,1) — cov(1,0)=1/4 oiA
In the general situation putting m’ = m—1

e (1,0) = (1/2)™ 0o(1,0) + (1/2)™ (1 — (1/2)™ Yo(1,1)
and

om'(1,1) = (1/2™ @o(1,1)
Hence,
Mni1,m' = Mn,m +10 {K;cov(1,0)
+ (1/2)m'K11 (cov(1,1) — cov(1,0)}//var T,

with K; = ¢(1,0) +9o(1,1) and K3y = ¢o(1,1). According
to (9), K; =Ky, =1 for selection on the phenotype and
K; = 1/2, K41 = 1/4 for G.C.A. selection. Solving the re-
currence in r and m:

Mnm’ =HMo +i0 {nchov(l,O)
R r=n
+(1/D" Ky Z W27 (eov(L1)
r=

—cov(1,0)) }/\/var T.:

Noting that r}i:? (/2 =200 - 1/2)"

Hnm_1 —Hn=-210 Ky (1 = (1/2)" 1)
— (1 = (1/2)")cov(1,1)
—cov(1,0))/n/var T.

With m > 1, this difference will be zero if cov(1,1) —
cov(1,0)=0,ie.,in the absence of epistasis.

To estimate (Un m —1 — Mn) Of (Un,1 — Mn) Withm = 2,
it is then necessary to estimate cov(1,1) and cov(1,0) from
covariances between relatives such cov PO, cov HS or cov
HUN.
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